Role of geomorphic and recent history on near-channel erosion

Karen Gran

UMD Geological Sciences

Near-channel Sediment Source Management Forum

Mankato, MN

January 4, 2012

Minnesota River contributes ~85-90% of sediment to Lake Pepin (Kelley and Nater, 2000)

Le Sueur River contributes ~25-30% of sediment to Minnesota River (MPCA et al., 2007)

Lake Pepin

From Engstrom et al. Kelley & Nater

Big questions

- What is the role of geomorphic history on modern sediment loading?
 - How has the valley evolved through time?
 - What is the natural (pre-settlement) sediment load?
- Where is sediment derived in the modern system?
 - How much is natural and how much is anthropogenic?
- What can we do to reduce sediment loads?

Glacial Lake Agassiz, 11,500 rc yr BP (13,400 cal yr BP) Laurentide Ice Sheet Lake From Thorleifson, 1996 From Fisher website, U.Toledo

River Longitudinal Profiles

Below the knick zone

Record of incision is recorded in terraces throughout lower basin

Constraining Holocene incision history

Fluvial Terraces

The Record of Incision

Pre-settlement conditions Constraints on Holocene Incision History of the Le Sueur

- 22 OSL & ¹⁴C dates on strath terraces
- 60-70 m incision at 13,400 cal yr ago)
- •Hydraulic geometry (width, depth) from modern channel

$$D_{50} = k_d(z_o-z)$$

Le Sueur is best modeled as a bedrock channel w/ downstream coarsening

As the valley widens, channels access valley walls less frequently, ...but as the valley deepens, those walls become higher.

3000

Ê 2000 ≻ 1000 End result is that volumes of sediment eroded are rather steady.

Take-home messages:

- 1. Valley excavation rates are not changing through time.
- 2. Variability is high, but quantifiable.
- 3. We can use this mass removed through valley excavation as a pre-settlement load.

Gage Locations in Le Sueur River watershed

How has the sediment budget changed through time?

Sources

U: Uplands

F_p: Floodplain

BI: Bluffs

Ba: Banks

C: Channel

incision

R: Ravines

Constraints

- 1. Gaging data
- 4. Terrestrial lidar scans
- 7. Field surveys

- 2. Geochemical tracers
- 5. Air photo analysis

- 3. Aerial lidar analysis
- 6. Numerical modeling

8. Optically Stimulated Luminescence and ¹⁴C dating

How has the sediment budget changed through time?

Now 4-5 times more sediment coming out of the Le Sueur River

All sources have increased.

Consistent with changes in land use and hydrology.

Minnesota River Hydrology Trends

Channel Widening

	0.400/
Minnesota R. only	0.49%
All reaches excluding Minnesota R.	0.18%
Reaches > 25 m wide only	0.39%
All Data	0.29%

Annual rate of widening

Two important shifts in sediment sources:

- 1. Late 1800s/ Early 1900s from nearchannel to upland
- 2. Post-1950s from upland back to near-channel

excavation are ~ 50,000 Mg/yr, much lower

Sediment sources in the last 50-60 years are

than modern TSS loads of 225,000 Mg/yr

shifting...

Acknowledgements:

Funding from:

Minnesota Pollution Control Agency National Center for Earth-surface Dynamics (NSF)

- S. Day, C. Jennings U Minnesota, MN Geological Survey
- P. Belmont Utah State University
- P. Wilcock Johns Hopkins University
- J.W. Lauer Seattle University
- A. Melesse, F. Khalif, L. Azmera, A. Thomas -Florida International University
- G. Parker & E. Viparelli –U. Illinois
- T. Rittenour Utah State University Luminesence Lab
- C. Wittkop Minnesota State U. MN Supercomputing Institute
- & many others...

